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Abstract

This thesis deals with mass flow in hydronic systems. It studies the theory
of hydronic system modelling and the theory of data fusion with focus on state
estimation techniques. A simulation model of a hydronic system is developed and
implemented in Simulink. Data recorded on a real hydronic test-bench are used to
analyse the pump characteristic and to calibrate the simulation model. A discrete
mathematical model of the hydronic system is derived and used in development of
an extended Kalman filter mass flow estimator, which uses the information coming
from measurements of electric power supplied to the pump and from identification
of the hydraulic resistance of the system. A mass flow controller for the hydronic
system is further developed, which uses the estimated mass flow as state observer
to track a mass flow reference. Two different approaches to the controller design
are presented. One uses a simple PI controller, the other is with an LQR state-
feedback controller.

Keywords: data fusion, extended Kalman filter, hydronic system, pump control

Abstrakt

Tato práce se zabývá hmotnostńım pr̊utokem v otopných systémech. Rozeb́ırá
teorii modelováńı otopných systémů a teorii fúze dat se zaměřeńım na metody
odhadováńı stavu. Simulačńı model otopného systému je vyvinut a implemen-
tován v Simulinku. Data naměřená na fyzickém modelu otopného systému jsou
využita k analýze charakteristiky pumpy a ke kalibraci simulačńıho modelu. Je
odvozen a diskretizován matematický model otopného systému, který je následně
použit při vývoji rozš́ı̌reného Kalmanova filtru. Ten odhaduje hmotnostńı pr̊utok
s využit́ım informaćı z měřeńı elektrického př́ıkonu pumpy a z identifikovaného hy-
draulického odporu systému. Dále je vyvinut regulátor hmotnostńıho pr̊utoku, jež
použ́ıvá odhad pr̊utoku jako pozorovatele stavu ke sledováńı referenčńı hodnoty
hmotnostńıho pr̊utoku. Jsou představeny dva rozd́ılné př́ıstupy návrhu regulátoru.
Prvńı využ́ıvá jednoduchý PI regulátor a druhý je regulátor s LQR stavovou
zpětnou vazbou.

Kĺıčová slova: fúze dat, rozš́ı̌rený Kalman̊uv filtr, otopný systém, ř́ızeńı pumpy
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and Andrej for their help with the programming and in the lab. Finally, my deep-
est thanks go to my family, whose never-ending support throughout my studies
made this work possible.





Contents

1 Introduction 1
1.1 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 2

2 Data Fusion 3
2.1 Data Fusion Definition . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Data Fusion Classification . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 State Estimation Techniques . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . 6
2.3.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . 9

3 Hydronic System Model 13
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Pipe Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Inertance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Pump Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Hydronic System Model . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Test-bench 21
4.1 Pump Electric Power Characteristic . . . . . . . . . . . . . . . . . . 21

4.1.1 Test-bench Set-up . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 First and Second Moment . . . . . . . . . . . . . . . . . . . 23
4.1.3 Data Properties . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.4 Polynomial Fitting . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Simulink Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Pump Electric Power Model . . . . . . . . . . . . . . . . . . 29

5 Mass Flow Estimator 33
5.1 MATLAB Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



5.2 Estimator with Simplified Linear Model . . . . . . . . . . . . . . . . 34
5.3 Extended Kalman Filter Estimator . . . . . . . . . . . . . . . . . . 35

5.3.1 Numerically Robust Implementation . . . . . . . . . . . . . 35
5.4 Simulink S-Function . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Control 39
6.1 PI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Jacobian Linearization Based Controller . . . . . . . . . . . . . . . 40

6.2.1 Jacobian Linearization . . . . . . . . . . . . . . . . . . . . . 41
6.2.2 Feedforward Controller . . . . . . . . . . . . . . . . . . . . . 42
6.2.3 Linear-quadratic Regulator . . . . . . . . . . . . . . . . . . . 42
6.2.4 Gain Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Experiments 47
7.1 Mass Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.1 Estimator with Simplified Linear Model . . . . . . . . . . . 47
7.1.2 Extended Kalman Filter Estimator . . . . . . . . . . . . . . 48

7.2 Mass Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.1 PI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.2 Jacobian Linearization Based Controller . . . . . . . . . . . 52

8 Conclusion 55

A CD Content 59

B Non-linear System Model 61

ii



List of Figures

3.1 Pump-resistance-inertance circuit . . . . . . . . . . . . . . . . . . . 14
3.2 Fluid mass element in a pipe . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Reduction of theoretical Euler head due to losses . . . . . . . . . . 18

4.1 Physical hydronic network model . . . . . . . . . . . . . . . . . . . 22
4.2 Pump mean power characteristic . . . . . . . . . . . . . . . . . . . 24
4.3 Pump standard deviation of power characteristic . . . . . . . . . . . 24
4.4 Power measurement histograms with fitted Gaussians . . . . . . . . 25
4.5 P-q characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Polynomial fitting of the mean power characteristic . . . . . . . . . 28
4.7 Polynomial fitting of the standard deviations of power characteristic 28
4.8 Flow to power transformation . . . . . . . . . . . . . . . . . . . . . 30
4.9 Pump electric power model schema . . . . . . . . . . . . . . . . . . 31

5.1 Kalman filter implementation comparison . . . . . . . . . . . . . . . 36

6.1 Schema with PI Controller . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Schema with Feedforward and LQR Controller . . . . . . . . . . . . 44
6.3 LQR gain schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1 Simplified linear model estimator: mass flow estimation . . . . . . . 48
7.2 EKF estimator: mass flow estimation . . . . . . . . . . . . . . . . . 49
7.3 EKF estimator: electric power . . . . . . . . . . . . . . . . . . . . . 50
7.4 EKF estimator: resistance estimation . . . . . . . . . . . . . . . . . 50
7.5 EKF estimator: flow estimation standard deviation . . . . . . . . . 50
7.6 PI controller: mass flow . . . . . . . . . . . . . . . . . . . . . . . . 51
7.7 PI controller: pump speed . . . . . . . . . . . . . . . . . . . . . . . 52
7.8 FF+LQR controller: mass flow . . . . . . . . . . . . . . . . . . . . 52
7.9 FF+LQR controller: pump speed . . . . . . . . . . . . . . . . . . . 53

iii



iv



List of Symbols

State-space Model

A state matrix of a linear system

B input matrix of a linear system

C output matrix of a linear system

f non-linear dynamic model function

F Jacobian of the dynamic model function

h non-linear measurement function

H Jacobian of the measurement function

j dimension of the measurement vector

k time step index

l dimension of the input vector

m dimension of the state vector

u input vector

x state vector

z measurement vector

Kalman Filter

K Kalman gain

P−k a priori error covariance at time step k

Pk a posteriori error covariance at time step k

v random process noise

v



V process noise covariance matrix

w random measurement noise

W measurement noise covariance matrix

x̂−k a priori state estimate at time step k

x̂k a posteriori state estimate at time step k

Hydronic System Model

I inertance [Pa h2 kg−1]

n angular velocity of the pump impleller [revolutions s=1]

n0 nominal angular velocity of the pump impleller [revolutions s=1]

p pressure [Pa]

Pe electric power [W]

q mass flow [kg h−1]

R hydraulic resistance [Pa h2 kg−2]

s pump speed (relative to nominal speed) [–]

Other Symbols

I identity matrix

vi



Chapter 1

Introduction

Most hydronic systems of today carry a fundamental paradox in their design.
On one hand, there is a circulator (usually a pump) in the system driving the liquid
within in order to convey thermal energy from the heat source to all parts of the
heated space. On the other hand, to control the distribution of the conveyed heat
as necessary, throttling valves are positioned around the hydronic network. These
in essence hinder the operation of the circulator, forcing it to overcome greater
resistance.

One way to avoid this paradox lies in completely removing the throttling valves
from the system and using small pumps in their place. The pumps have better
ability to influence the amount of conveyed heat through the control of mass flow
passing through them and instead of imposing greater resistance on the system,
they aid the main circulator effort. Both of these advantages create potential for
substantial energy savings. However, to be able to exploit this potential as much
as possible, it is necessary to have precise knowledge about the amount of heat
being distributed as well as the ability to control it well. Thus, there is need for a
good mass flow estimator and a good mass flow controller.

When estimating the mass flow of a hydronic liquid through a pump in a hy-
dronic system, without actually directly measuring it, there are several sources of
information one can turn to. First and foremost, there is the electric power driving
the pump. It is directly connected to the mass flow produced by the pump and
since it is easily measurable, it serves as the main source of information. Further
useful information about mass flow comes from the knowledge of the hydraulic as-
sembly of the hydronic network. Such knowledge combined with a known pressure
characteristic of the pump can be also used to infer the mass flow.

Having several sources of information for a single quantity entails utilization
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of data fusion techniques to produce an overall result of the estimation. In this
thesis, I make use of Kalman filtering to merge the individual estimates together.
Moreover, Kalman filters are also used to process the noisy measurements for the
individual sources of information. I explore non-standard implementations of the
Kalman filter to reduce the risk of numerical difficulties during estimation.

To facilitate the development of a mass flow estimator which would use the
combined information, a good model of a hydronic system is needed. I thus first
formulate a mathematical model of the hydronic system at hand. To verify its
correctness and to allow for experimenting, I then use a hydronic system Simulink
model created by my colleagues at the Department of Control Engineering of
the Czech Technical University, adjusted to fit the structure of the mathematical
model. To calibrate the parameters of the model, I study the physical model of
a hydronic system, which was also available to me at the department. Statistical
analysis of the measurements made on the physical model was also used to tune
parameters of the Kalman filter.

Once the best possible estimate of the mass flow is attained, I turn to the
development of a mass flow controller. I develop a controller, which utilizes the
estimated mass flow as a state observer output to optimally control the actual mass
flow. Two design options are presented, one using a simple PI feedback controller,
the other using a more complex approach with Jacobian linearization and a LQR
regulator.

1.1 Organization of the Thesis

The thesis is organized in the following way. Below this introduction, Chap-
ter 2 introduces the reader to the theory of data fusion and especially Kalman
filtering. Chapter 3 describes the way the hydronic system is modelled mathe-
matically. Chapter 4 presents both the physical and simulational testing facilities
used throughout this thesis. Chapter 5 provides an in depth description of the
actual mass flow estimation process and deals with actual MATLAB and Simulink
implementations of the estimator. Chapter 6 addresses the design of a controller
which utilizes the estimate of the mass flow provided by the estimator. Finally,
Chapter 7 presents some experiments performed on the developed estimator and
controller, to showcase their functionality.
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Chapter 2

Data Fusion

In this chapter, I study data fusion. First, I define what data fusion is from a
very general point of view. Second, I overview possible classifications of the data
fusion processes that are being used across different fields of research, listing some
examples in the process. Later, I provide an introduction to the techniques aimed
specifically at state estimation. Last, I focus more in detail on Kalman filtering,
which is the technique I used in my work.

2.1 Data Fusion Definition

Humans accept inputs from five different senses. The human brain then by
some process, not yet fully understood by us, combines and transforms these inputs
into a sensation of one reality, giving us a much more complete picture of our
surroundings than would have been possible using any of the senses separately [1].
The process in the human brain can be understood as being a data fusion process.

In general, any task involving estimation can benefit from the use of data fu-
sion [2]. In this thesis, I understand the term data fusion as being synonymous
to the term information fusion. In other words, instead of only considering fusion
of raw data obtained from sensors, I am interested in combining any information
available whatsoever. Aside from sensor data, this could mean for example taking
advantage of any knowledge coming from system identification or associated physi-
cal constraints. Another example can be the human depth perception, which aside
from the obvious information provided by binocular vision also heavily relies on
information coming from familiar size of objects recognized in the scene, changes
to the scene due to the motion of the observer himself and several other cues [3].
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A generally accepted [2] definition of data fusion comes from the Joint Directors
of Laboratories workshop [4]: “A multi-level process dealing with the association,
correlation, combination of data and information from single and multiple sources
to achieve refined position, identify estimates and complete and timely assessments
of situations, threats and their significance.” In short, data fusion can be defined
as combination of multiple sources to obtained improved information. The im-
provement of the information can be in the sense of smaller cost, higher quality or
greater relevance. In [1], the related term sensor fusion is defined as the combi-
nation of sensory data, such that the resulting information is better than it would
be if these sensors were used individually.

2.2 Data Fusion Classification

Data fusion being a multidisciplinary area, it is hard to define a clear classifi-
cation of the employed methods and techniques. For the purposes of this overview
however, I have chosen several possible classifications, which are proposed in liter-
ature.

The first criteria, based on which it is possible to classify, is the relations
between the data sources [1, 2]:

(i) Complementary : The data sources are not dependent on each other directly.
Each of the data sources views a different region of the observed system and
the data they provide is merged to give a more complete picture. A good
example of complementary data fusion is the use of multiple cameras, each
observing different parts of a scene.

(ii) Redundant (or competitive): Two or more data sources provide information
about the same target. Fusion of data from a single sensor at different
instants is possible. Data fusion in this case provides increased precision,
confidence and robustness. Several cameras viewing the same scene would
be an example of redundant data fusion.

(iii) Cooperative: When the data provided by independent data sources are com-
bined to infer typically more complex information, that would not be avail-
able from a single data source. A three-dimensional reconstruction of a scene
by combining the data from several two-dimensional images of it is an ex-
ample of cooperative data fusion.

The problem of mass flow estimation, which I am dealing with in this thesis, falls
into the second category—the redundant data fusion, as I am trying to estimate
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one particular quantity, based on all the information available.

Another possible classification criteria for data fusion types is the nature of the
input/output data [2]:

(i) Data in-data out : The most basic data fusion method, where raw data are
both input and output. It typically makes the data more reliable or accurate.

(ii) Data in-feature out : Features or characteristics describing the target are
extracted from the data sources.

(iii) Feature in-feature out : Also called feature fusion, it addresses a set of features
with aim to refine them or obtain new features.

(iv) Feature in-decision out : This kind of data fusion obtains a set of features
and provides a decision based on them as output.

(v) Decision in-decision out : Also known as decision fusion, it fuses input deci-
sions to obtain better or new ones.

As far as this thesis is concerned, the focus will be on data in-data out data fusion,
as the required output of a mass flow estimator is a data stream to be used in
control of the system.

Available data fusion techniques can be classified into three non-exclusive cat-
egories [2]: (i) data association, i.e. determining the target corresponding to the
measurements, (ii) state estimation, i.e. determining the state of the target, and
(iii) decision fusion, which aims to make high-level inference about events pro-
duced by the target. Of particular interest to me is the state estimation, as my
goal is to estimate a state of a hydronic system.

2.3 State Estimation Techniques

As stated before, state estimation techniques have the objective of determin-
ing the state of a system. This is done based on observation or measurements.
However, there is no guarantee that the measurements are relevant, as they can
be influenced by noise. Finding values of the state that fit the measured data as
much as possible is the general problem which state estimation is trying to solve.
Following now is an overview of the most common state estimation techniques [2].
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2.3.1 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation is a technique based on probabilistic
theory. Probabilistic estimation is in general appropriate, when the state variables
follow an unknown probability distribution. The base of ML is the likelihood
function λ(x) defined as

λ(x) = p(z|x) (2.1)

i.e. the probability density function of the sequence of observations z given the
value of the state x. The working principle of a ML estimator is maximizing the
likelihood function over possible values of x.

The likelihood function can be derived from a model of the sensors used, which
can be either analytical or empirical. Finding this model, which is necessary in
order to be able to calculate the prior distribution, is the main problem of applying
this estimation technique.

2.3.2 Particle Filter

Particle filter is a technique belonging to a class of algorithms referred to as
Monte Carlo methods. Specifically, particle filter is sometimes called the sequential
Monte Carlo method. The basis of the method is using many random samples
called particles to build the posterior density function. The random particles are
propagated over time within two phases: the prediction phase and the update
phase. In the prediction phase, each particle is modified according to a model
with some added noise. After that, in the update phase, the weight each particle
has been assigned is reevaluated using the sensor observation. Each iteration is
concluded by the resampling step, which discards particles with the low weights,
multiplies particles with high weights and often also generates a certain number
of new particles for increased robustness.

While being more flexible than other estimation method in coping with non-
linear dependencies and non-Gaussian probability densities, the particle filter has
some disadvantages. A very large number of particles is required to obtain small
uncertainty in the estimation. The optimal number of particles itself is also hard
to establish in advance, often making empirical tuning a necessity.

The most popular state estimation method—the Kalman filter—which I use in
my thesis, is studied more in depth in the following section.
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2.4 Kalman Filtering

One of the most well-known and often-used tools that can be used for stochastic
estimation and data fusion is the Kalman filter [5]. It is named after Rudolph E.
Kalman, who in 1960 published his seminal paper describing a recursive solution
to the discrete-data linear filtering problem [6].

The Kalman filter provides a mathematical framework for inferring the unmea-
sured variables from indirect and noisy measurements [7]. It is essentially a set of
mathematical equations that implement a predictor-corrector type estimator, that
is optimal in the sense that it minimizes the estimated error covariance—when
some presumed conditions are met [5]. However, even though the conditions nec-
essary for optimality are rarely met, the filter works well in spite of that. It has
become a universal tool for integrating different sensor and data collection systems
into an overall optimal solution.

2.4.1 Kalman Filter

First, I look at the linear and discrete Kalman filter, as it was originally for-
mulated by Kalman, where the model of the process to be estimated is linear and
where the measurements occur and the state is estimated at discrete points in
time. It addresses a general problem of trying to estimate a state x ∈ Rm of a
discrete-time process with a measurement z ∈ Rj given the input u ∈ Rl. The
process is governed by the following linear stochastic difference equations

xk = Axk−1 + Buk + vk−1

zk = Cxk + wk

where A is a m × m matrix relating the state at the previous time step k − 1
to the state at the current time step k, B is a m × l matrix relating the input u
to the state x and C is a j ×m matrix relating the state x to the measurement
z. The random variables v and w represent the process and measurement noise
respectively. They are assumed to be independent, white and to follow normal
probability distributions as in

p(v) ∼ N (0,V)

p(w) ∼ N (0,W)

i.e. with zero means and covariances V and W respectively, where V and W are
the process noise and measurement noise covariance matrices respectively.
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The Kalman filter estimates a process by using a form of feedback control: the
filter estimates the process state at the next time step and then obtains feedback
in the form of measurements [5]. These two actions are often called the temporal
update (or prediction) and the measurement update (or correction). To be able to
correctly describe them, I need to define x̂−k ∈ Rm to be the a priori state estimate
at step k given the knowledge of the process prior to step k, and x̂k ∈ Rm to be
the a posteriori state estimate at step k given measurement zk. Analogously, let
P−k be the a priori error covariance and Pk be the a posteriori error covariance.

Now I have everything ready to write down the temporal update and the mea-
surement update as two sets of equations. First, the temporal update equations
are responsible for projecting the current state and error covariance estimates in
time to obtain the a priori estimates for the next time step.

Temporal Update

1. Project the state ahead

x̂−k = Ax̂k−1 + Buk

2. Project the error covariance ahead

P−k = APk−1A
T + V

Second, the measurement update equations incorporate a new measurement into
the a priori estimate to obtain an improved a posteriori estimate.

Measurement Update

1. Compute the Kalman gain

Kk = P−kC
T
(
CP−k CT + W

)−1
2. Update estimate with measurement zk

x̂k = x̂−k + Kk

(
zk −Cx̂−k

)
3. Update the error covariance

Pk = (I−KkC) P−k

The m× j matrix K is chosen to be the gain that minimizes the a posteriori error
covariance and is generally called the Kalman gain. The I is the identity matrix.
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The details of derivation of these equations are beyond the scope of this text
and can be found in literature. A good overview is given in [5], while a more in
depth explanation can be found in [7].

Describing the Kalman filter operation in words rather than with equations,
it can be said that the filter performs the temporal and measurement updates
recursively on its earlier results. In the temporal update phase, it predicts the next
estimated value, based on the previous estimate and the knowledge of the system
model. This prediction involves not only the update of the estimated mean, but
also of the covariance, which is a measure of uncertainty of the estimate. The
result of the prediction are the so called a priori estimates of state mean and error
covariance.

The first task during the measurement update is to minimize the a posteriori
error covariance by choosing the Kalman gain value. After actually taking the
measurement of the process, this Kalman gain is used to correct the prediction
of the estimated mean, creating the a posteriori state mean estimate. Lastly,
the error covariance is also updated according to the Kalman gain, yielding the a
posteriori error covariance estimate.

At the next time step, the two updates are repeated on the a posteriori results
of the previous step, giving a recursive nature to the Kalman filter operation. This
is a very appealing feature of the filter, as it eases its practical implementation.

2.4.2 Extended Kalman Filter

The standard Kalman filter is only applicable to systems, which can be de-
scribed linearly. However, in real world there are many system of highly non-linear
nature to which it would be convenient to be able to use it. This problem arose
as early as in the fall of 1960 when Kalman presented the filter to Stanley F.
Schmidt of the Ames Research Center of NASA [7]. Recognizing its applicability
the trajectory estimation and control problem for the Apollo project, Schmidt and
his colleagues at Ames developed what is now known as the extended Kalman
filter, which has been used ever since for many real-time non-linear applications
of Kalman filtering.

The key working principle of the extended Kalman filter is linearization about
the current mean and covariance [5]. Partial derivatives of the process and mea-
surement functions are used to compute the estimate of covariance. Keeping the
same notation as with the linear Kalman filter, the equations governing the process
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are now

xk = f (xk−1,uk,vk−1)

zk = h (xk,uk,wk)

where f is a non-linear dynamic model function relating the previous state, process
noise and current input to the state at the current time step and h is a non-linear
measurement function relating the current state, input and measurement noise
to the current measurement. Note, that in practice the individual values of the
process and measurement noises are not known at each time step so the state and
measurement are are approximated without them.

Another important thing to note is that there is a fundamental flaw in this ap-
proach, since the distributions of the various random variables are no longer normal
after undergoing the non-linear transformations. Thus, the extended Kalman filter
only approximates the optimality of the estimation by linearization [5]. Although
there are other non-linear versions of the Kalman filter solving this problem, such
as the unscented Kalman filter, the extend version is used throughout this thesis.

The equations of the temporal update as well as the equations of the measure-
ment update in the extended Kalman filter are very much like those in the standard
Kalman filter. The difference stems from not having explicit state matrix A, input
matrix B and measurement matrix C. When updating the state mean estimate
these are replaced with the non-linear function f in the case of matrices A and
B and with the function h in the case of matrix C. To update the estimate of
covariance, partial derivatives of the non-linear functions f and h are needed to
replace the matrices. In practice, the partial derivatives of f and h are gathered
in the Jacobian matrices F and H respectively.

After the above mentioned changes, the equations for the temporal update have
the following form.

Temporal Update

1. Project the state ahead
x̂−k = f (x̂k−1,uk, 0)

2. Project the error covariance ahead

P−k = FPk−1F
T + V

The equations for performing the measurement update in the extended Kalman
filter are the following.
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Measurement Update

1. Compute the Kalman gain

Kk = P−k HT
(
HP−k HT + W

)−1
2. Update estimate with measurement zk

x̂k = x̂−k + Kk

(
zk − h

(
x̂−k ,0

))
3. Update the error covariance

Pk = (I−KkH) P−k

As far as the actual operation of the extended Kalman filter is concerned, it
is virtually identical as the operation of the regular Kalman filter. The recursive
nature of repeating the same updates on the previous results remains the same, as
does the structure of these updates.

Writing down the complete set of equations of the extended Kalman filter
concludes my study of data fusion techniques. At this point, I shift focus to the
study of hydronic systems, which is the topic of the following chapter.

11



12



Chapter 3

Hydronic System Model

In this chapter, I aim to create a model of a hydronic system. Having such
a model will facilitate the development and testing of a mass flow estimator as
well as the controller. To create the model, I first form a mathematical model,
describing a hydronic systems dynamics based on first principles. This model is
fundamental for the mass flow estimator, as it needs to be able to predict the
internal state of the system based on few observations.

3.1 System Model

When modelling a hydronic system, one must consider several variables de-
scribing its state. The most important ones are mass flow q, and pressure p. Mass
flow (or just flow) is the amount of fluid passing through an area per unit of time.
Pressure is the force exerted by a fluid per unit area. These two variables have a
nice parallel in electrical systems, commonly referred to as the electronic-hydraulic
analogy, where instead of flow there is electric current and instead of pressure there
is electric potential [8]. Just as in electrical systems, one is typically only interested
in electric potential differences (i.e. voltages), when describing fluid systems, one
is typically interested in the pressure differences.

Taking the analogy even further, it is possible to model a hydronic system sim-
ilarly to how electrical circuits are modelled. Therefore, I can start the description
of a hydronic system by drawing a circuit analogous to an electrical circuit and de-
scribing its behaviour with a differential equation in a similar way to how I would
describe the electrical one. Here, I sketch such a circuit, describe its elements and
finally put together a differential equation for the motion of a fluid within.
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Dynamics of a hydronic system with many pumps affecting each other may
be challenging to describe, due to the pumps influencing mass flow through each
other. A way around this problem lies in designing the hydronic system with many
pumps in such a way, that the influence between the individual pumps is negligible
and can thus be ignored. One such design of the hydronic system may be that
there is a primary loop which contains the main circulator and the heat source.
Each of the other pumps is connected to this primary loop in parallel, forming
several secondary loops. Moreover, the input and output pipes of the secondary
loops are connected very close together, making the pressure difference between
the connections in the primary circuit negligible. In such configuration, there is
almost no pressure interaction not only between the individual secondary circuits,
but also between each of the secondary circuits and the primary circuit itself, as
putting the input and output pipes close together creates something analogous to
a short circuit.

The biggest advantage of this design is that the secondary circuits contain-
ing the pumps, which are of interest to me, can be modelled as separate systems
altogether. Therefore, the hydronic system I am interested in modelling is very
simple. Most importantly, it contains a pump or more generally speaking a non-
ideal pressure source. An electrical analogy for the pressure source would be a
voltage source. Additionally, the hydronic system I am describing contains resis-
tance and inertance. Resistance describes the difficulty with which a fluid moves
through the system, while inertance arises as the result of the lumped momentum
of a flowing fluid.

Figure 3.1: Hydronic system with a pump modelled as an electric circuit.
Hydraulic resistance and inertance represented by symbols for resistor and
inductor respectively. Arrows indicate the direction in which the pressure
decreases.

A circuit representing a hydronic system with a pump is shown on Figure 3.1.
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Note that the resistance and inertance, although they are spread in the system
as a whole, are represented as a single resistance element and a single inertance
element. The symbols of resistor and inductor are used for the resistance and
inertance elements respectively.

To construct a differential equation for the motion, or mass flow, of a liquid in
the system, I need to look at the pressure. The key thing here is to remember,
that since there is a closed loop, the pressure of interest is the pressure difference
not the absolute value of the pressure. Thus, the pressures ∆pp, ∆pR and ∆pI
marked in the Figure 3.1 refer to the pressure difference across each individual
element rather than to the absolute value of pressure in the element. The arrows
denote the direction in which the pressure decreases, i.e. they point from a region
of higher absolute pressure towards a region of lower absolute pressure.

Just as in electrical circuits, where the Kirchhoff’s voltage law tells us that the
directed sum of voltages around a closed network is zero, I can assume here, that
the directed sum of pressure differences around the sketched hydronic network is
zero. In other words, I assume that the pressure ∆pp generated by the pump is
equal to the total pressure loss around the system, which is partly due to resistance
(∆pR) and partly due to inertance (∆pI). Expressing this in an equation yields

∆pp −∆pR −∆pl = 0 (3.1)

Looking at the individual elements, I can express the pressures in more detail and
substitute into (3.1).

3.2 Pipe Model

The main feature of a pipe in a hydronic system is the resistance it imposes on
the passing fluid. Fluid friction resistance in hydronic networks with real-world
elements behaves nonlinearly and is generally modelled as quadratic [8], following
a law such as

∆pR = Rq2 (3.2)

where ∆pR is the pressure difference across the resistance, R is the hydraulic
resistance, also called hydraulic resistance and q is the mass flow rate through the
resistance.
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3.3 Inertance Model

Inertance arises as the result of the momentum of a flowing fluid. If I consider
incompressible fluid flowing down a pipe with constant cross sectional area A, I
can treat it as a mass element subjected to two forces due to the pressure from
each side. Figure 3.2 depicts such a situation, where a fluid mass element of length
L flows down a pipe with velocity v, while being subject to forces F1 and F2.

Figure 3.2: Fluid mass element (grey) of length L moving through a
pipe at speed v, while being subject to forces F1 and F2.

Applying Newton’s second law of motion to the element, I can write

mv̇ = F1 − F2 (3.3)

where m is the mass of the fluid element and v̇ is the rate of change of its velocity.
Since the two forces F1 and F2 are due to pressure, the well known formula F = pA
can be used to rewrite the equation (3.3) into

mv̇ = A(p1 − p2) = A∆pI (3.4)

where A is the cross sectional area of the pipe, p1 and p2 are the pressures on
the left and right side of the fluid element respectively and ∆pI is their difference.
Considering the fact that the volume of the fluid element is V = LA and that
mass can be expressed as m = ρV , where ρ is the fluid density, equation (3.4) can
be modified to

ρLAv̇ = A∆pI (3.5)

Noting that mass flow can be calculated as q = ρvA and therefore that rate of
change of mass flow can be calculated as q̇ = ρv̇A, equation (3.5) can be further
modified to yield

q̇L = A∆pI (3.6)

Now, the pressure difference can be expressed, giving

∆pI =
L

A
q̇ (3.7)
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This equation is very much like the equation for an inductor, which leads to the
definition of inertance as I = L

A
. Given that, the pressure loss due to the inertance

can be finally written as
∆pI = Iq̇ (3.8)

3.4 Pump Model

When the pump operates, energy is added to the shaft in the form of mechanical
energy. It is then converted by the impeller to internal energy, i.e. static pressure,
and kinetic energy, i.e. velocity. This process is described by the most important
equation connected to pumps—the Euler’s pump equation [9]. As shown in (3.9),
the equation can be expressed as the sum of three contributions: (i) the static
head due to the centrifugal force, (ii) the static head due to the velocity change
through the impeller and (iii) the dynamic head.

H =
U2
2 − U2

1

2g︸ ︷︷ ︸
Static head

(centrifugal force)

+
W 2

1 −W 2
2

2g︸ ︷︷ ︸
Static head

(velocity change)

+
C2

2 − C2
1

2g︸ ︷︷ ︸
Dynamic head

(3.9)

where H is the total pump head, U is the tangential velocity of the impeller, W
is the velocity of the fluid relative to the impeller, C is the absolute velocity of
the fluid flowing through the impeller and g is the gravitational acceleration. The
lower indices 1 and 2 of the velocities refer to their localization at the impeller
inlet and outlet respectively. The total pump head is defined as

H =
∆pp
ρg

(3.10)

where ∆pp is the pressure difference across the pump, ρ is the fluid density and g
is the gravitational acceleration.

The above described Euler’s pump equation describes the operation of an ideal
pump. In reality, the pump performance is lower then predicted by the equation,
because of a number of mechanical and hydraulic losses in impeller and pump
casing. While the mechanical losses are simply caused by mechanical friction,
the hydraulic losses have multiple different causes including flow friction, mixing,
recirculation, leakage and incidence. Figure 3.3 shows the effect the various losses
have on the pump characteristic. A very nice overview of all the loss types is given
in [9].

Due to the fact, that there is no straightforward way to analytically express the
real pressure generated by the pump, its characteristic is usually approximated by
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Figure 3.3: Reduction of theoretical Euler head characteristic of the
pump due to losses. The real characteristic after taking the various
losses into account is denoted as Pump curve in the plot. The horizontal
axis shows volumetric flow (Q), the vertical axis shows head (H). Taken
from [9].

a polynomial [10]. For the purposes of this model, I use the following polynomial
of the second degree.

∆pp = a2q
2 + a1sq + a0s

2 (3.11)

where pp is the pressure generated by the pump, q is the mass flow through the
pump, s is the pump speed and the coefficients a2, a1 and a0 are called the pump
coefficients. The pump speed is related to the angular velocity of the pump impeller
in the following way

s =
n

n0

(3.12)

where n is the angular velocity of the pump impeller and n0 is the nominal angular
velocity of the pump impeller, i.e. the angular velocity at the maximum speed of
the pump. Substituting for the speed in equation (3.11) yields

∆pp = a2q
2 + a1

n

n0

q + a0
n2

n2
0

(3.13)
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3.5 Hydronic System Model

Having found the expression for each of the pressure differences, I can now go
back to the equation (3.1) and modify it by substituting for ∆pR, ∆pI and ∆pp
using equations (3.2), (3.8) and (3.13).

a2q
2 + a1

n

n0

q + a0
n2

n2
0

−Rq2 − Iq̇ = 0 (3.14)

Expressing the rate of change of mass flow and grouping the terms together where
possible yields

q̇ =
a2 −R
I

q2 +
a1
In0

nq +
a0
In2

0

n2 (3.15)

The equation (3.15) is the differential equation describing the motion of the
fluid flowing in the hydronic system, which I set out to find at the beginning of
this chapter. Next chapter follows up by discussing testing of the hydronic system
model created here.
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Chapter 4

Test-bench

This chapter deals with test-benches. First, I take a closer look into the study of
physical properties of pumps, i.e. the most important part of the hydronic system
for the estimation. In this study, I utilize a physical model of a hydronic system
with a real pump installed. After that, I also set up a model in Simulink, which
enables me to run simulations of the hydronic system’s operation and to verify
theoretical results.

4.1 Pump Electric Power Characteristic

The most important feature of the pump is its power characteristic, i.e. the rela-
tion between the electric power the pump consumes and the mass flow it generates.
To study the power characteristic of a pump, I was able to use measurements from
a real pump installed in a hydronic network model. In this section, I study the
measurements from a statistical point of view and extrapolate a general polynomial
representation of the measured characteristic.

4.1.1 Test-bench Set-up

The data with which I work in this section have been gathered using a physical
hydronic network model built at the Department of Control Engineering of the
Czech Technical University (see Figure 4.1). The test-bench included a boiler,
a heat exchanger, two pumps and a throttling valve, with one of the pumps,
and the boiler in a primary circuit and the second pump, the heat exchanger
and the throttle valve in a secondary circuit. The main measured quantities of
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the test-bench were the pump’s input electric current and voltage along with the
revolutions of the pump impeller and the mass flow through the secondary circuit.
There was also a thermometer measuring the temperature of the fluid circulating
in the system.

Figure 4.1: Physical hydronic network model.

The control of the whole system was done by a Nucleo board. The same board
also took care of collecting the data and sending them to a connected computer
running either a simple serial terminal programme or a complex Simulink model.
In case that the Simulink model was used, the collected data were saved to the
computer’s hard drive.
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4.1.2 First and Second Moment

Since electric power consumed by the pump is not measured directly, it needs
to be calculated. When calculating the electric power, I need to consider the
statistical properties of the measured quantities, which are in this case electric
current and voltage, and the effects they will have on the resulting value of power.
I am particularly interested in the standard deviation.

If I had the exact current and voltage values, I could calculate the power by
simply using the well known formula

P = UI,

where P is power, U is voltage and I is current. However, since I only have
sets of measured values affected by measurement errors, I need to take a statistical
approach when calculating power. Specifically, I am interested in calculating mean
and variance, i.e. the first and second moment.

I am assuming that voltage and current are not independent variables, so to
calculate the mean of their product I use the formula for the product of two
correlated random variables

E(X1X2) = E(X1) E(X2) + Cov(X1, X2)

as given for example in [11]. In this case, I therefore get

E(P ) = E(U) E(I) + Cov(U, I) (4.1)

The formula given in [11] for calculating the second moment, the variance,
of a product of two dependent variables is a bit more elaborate, but still rather
straightforward, as nothing more than the cross covariance of the two variables is
needed in the calculation.

Var(X1X2) = Var(X1) Var(X2) + E(X1)
2 Var(X2) + E(X2)

2 Var(X1)

+ Cov(X2
1 , X

2
2 )− Cov(X1, X2)

2 − 2 Cov(X1, X2) E(X1) E(X2)

In this case, I therefore get

Var(P ) = Var(U) Var(I) + E(U)2 Var(I) + E(I)2 Var(U)

+ Cov(U2, I2)− Cov(U, I)2 − 2 Cov(U, I) E(U) E(I) (4.2)

Figures 4.2 and 4.3 show the resulting means and standard deviations (which
are the square root of the calculated variances) at the measured points respectively.
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Figure 4.2: Power mean at the measured points of the pump power
characteristic.
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Figure 4.3: Standard deviations of power at the measured points of the
pump power characteristic.

In Figure 4.2, it can be seen, that the power data show a linear growth trend
with increasing flow and a quadratic growth trend with increasing revolutions.
Observations, which as the reader will be able to see later, are true for Figure 4.3
as well.
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4.1.3 Data Properties

Throughout this section, I assume, that the measured data for voltage and
current as well as the derived power all follow the normal Gaussian distribution.
To verify this assumption, I made several tests on the data. First, I plotted a
histogram for each measured data point and tried to fit it with a Gaussian bell
curve. From these plots, I was able to empirically say, that the data roughly follow
normal distribution. Figure 4.4 shows a sample of the data histograms with fitted
Gaussians. (Only a sample has been included here for better clarity in print.) The
black arrows on the bottom and on the left show the general trends in measured
revolutions and flow respectively.

F
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w
 [

k
g
/h

]

Revolutions

Figure 4.4: Power measurement histograms with fitted Gaussians. Rev-
olutions per second (n) of the pump impeller increase from right to left,
while mass flow (q) increases from bottom to top as indicated by the
arrows.

To verify the normality assumption on the data further, I also used several
statistical normality tests, conveniently implemented in MATLAB out of the box.
To be specific, I ran the Chi-square goodness-of-fit test [12], the Lilliefors test [13]
and the One-sample t-test [14].

The Chi-square goodness-of-fit test, also known as the Pearson’s chi-squared
test, determines whether a data sample comes from a probability distribution (in
our case the normal distribution), with parameters estimated from the data. The
test groups the data into bins, calculates the observed and expected counts for
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those bins and computes the Chi-square test statistic

χ2 =
N∑
i=1

(Oi − Ei)
2

Ei

where N is the total number of observations, Oi is the number of observations of
type i and Ei is the expected observation count of type i based on the hypothesized
distribution [15].

The Lilliefors test is a modification of the Kolmogorov-Smirnov test, which is
based on the largest vertical difference between the hypothesized and empirical
distribution. The Lilliefors test uses parameters based on the data, rather then
manually specified ones [16].

The One-sample t-test tests the null hypothesis that the data come from a
normal distribution with a given estimated mean and unknown variance. The test
statistic is

t =

√
n(x̄− µ)

Sn

where n is the sample size, x̄ is the sample mean, µ is the hypothesized mean and
Sn is the sample standard deviation [15]. The test decision comes from calculating
the probability of observing the test statistic under the null hypothesis.

The results of the test at the standard 5 % significance level were mixed. The
first two tests generally rejected the hypothesis, that the data come from a normal
distribution, while the One-sample t-test unequivocally confirmed it. This is not a
very definite assurance of the correctness of my assumption. However, taking into
account the histogram test, I consider it to hold.

Now that the data have been analysed, I can proceed to showing the pump
characteristic in which I am interested the most—the power to flow characteristic.
As can be seen in Figure 4.5, the characteristic has quite nice properties for high
power situations, being reasonably sloped and therefore well usable. In low power
circumstances however, especially around 2 W, the characteristic is almost flat
and any estimate of mass flow based on that region of the characteristic therefore
suffers from great uncertainty.

4.1.4 Polynomial Fitting

So far, I have only worked with a sparse characteristic comprised of the mea-
sured data points. However, to get a more complete and universally usable char-
acteristic, I have to somehow interpolate the missing values between the sparsely

26



Flow [kg/h]
200 250 300 350 400 450 500 550 600 650

P
ow

er
 [W

]

0

2

4

6

8

10

12

14

16

40 revs/s

60 revs/s

80 revs/s

90 revs/s

100 revs/s

110 revs/s

115 revs/s

120 revs/s

125 revs/s

130 revs/s

P-q Characteristic

Figure 4.5: P-q (power-flow) characteristic. The individual lines each
represent the characteristic at specific revolutions per second (revs/s)
count of the impeller as marked on the plot to the left of each char-
acteristic.

distributed points. A method I chose to accomplish this is multidimensional poly-
nomial fitting.

As I observed before from the three dimensional pump characteristic (Fig-
ure 4.2), the data show a linear growth trend in one dimension and a quadratic
growth trend in the other dimension. Therefore, the characteristic can be fit-
ted with the following polynomial, consisting of monomials with two variables of
degrees up to one and two respectively.

Pe(q, n) = b0 + b1q + b2qn+ b3n+ b4n
2 (4.3)

where Pe is the electric power, q is the mass flow, n is the angular velocity of the
pump’s impeller and b0, b1, b2, b3 and b4 are the fitted polynomial’s coefficients.

To perform the fitting itself, I used an extension of the standard MATLAB
polyfit function, the polyfitn, published at [17]. The result of the polynomial
fitting to the three dimensional power characteristic is shown on Figure 4.6. The
fitting turned out to be very precise, with the root-mean-square error (RMSE)
not exceeding 0.15 W and the coefficient of determination (R2) being 99.86 %.

Polynomial of the same structure (i.e. with two independent variables of de-
grees one and two respectively) proved to be the best fit for the standard deviation
of power as well. Figure 4.7 shows the result of fitting a polynomial to the stan-
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Figure 4.6: Polynomial fitting of the pump mean power characteristic;
RMSE = 0.1469 W, R2 = 99.86 %.

Figure 4.7: Polynomial fitting of the pump standard deviations of power
characteristic; RMSE = 0.0256 W, R2 = 78.55 %.

dard deviation of power graph. In this case, the fit was not quite as precise, but
still provided a good approximation with the RMSE being 0.02 W and the R2

reaching 78.55 %.
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4.2 Simulink Model

To be able to run simulations of the hydronic system, I used a Simulink model.
However, instead of creating a model from scratch, I worked with an existing
Simulink test-bench previously created by my colleagues at the Department of
Control Engineering, which I adjusted extensively to fit my needs.

The Simulink test-bench is constituted by a primary and a secondary hydronic
circuit, with only the primary being relevant to my needs. The primary circuit
consists of two parts: the hydraulic part and the thermal part. The thermal part
which mainly includes the boiler is not very important for my goals either. The
crucial part is in fact the hydraulic part, as it encompasses everything important
for the mass flow. There is a model of a pump, a resistance and it also includes
the dynamics of inertance.

4.2.1 Pump Electric Power Model

The first important addition to the hydronic model was the electric power
model of the pump. Since the most important information for the mass flow
estimator comes from the measurement of the electric power supplied to the pump,
the model needs to somehow emulate it. To do so is the purpose of the pump
electric power model.

The result of the pump analysis described in the previous section was a poly-
nomial fitted to the electric power characteristic of the pump. Because there is
no actual electric power which would drive the pump in the Simulink model and
which could be observed, it has to be estimated based on this characteristic. Fig-
ure 4.8 illustrates the procedure. The current simulated mass flow, which is a
known quantity throughout the simulation, and the current pump speed, which is
also known during simulation and easily precisely measured in a real system, serve
as the input information. A two dimensional flow-power characteristic appropri-
ate at the given pump speed is first selected from the polynomial. The mass flow
value is then transformed using this characteristic to the expected mean value of
the electric power.

To imitate the statistical properties of the real power measurement, the knowl-
edge of the standard deviation is then used. The appropriate value of standard
deviation is first picked out by evaluating the polynomial fitted to the standard
deviation of power in a similar fashion in which it has been done with the power
mean. The transformed mean value is then obfuscated by adding a random noise
which has this appropriate standard deviation to it.
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Figure 4.8: Flow to power transformation. Transformed mean value is
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Going back to the Simulink model, as shown on Figure 4.9, it takes in the mass
flow and the revolutions values as inputs and evaluates the two fitted polynomials
based on these inputs. The results of the evaluations are then combined, with the
use of a generated normally distributed random number.

With the ability to produce measurements of electric power now added to the
simulator, it is a good representation of a real hydronic system test-bench. It
contains everything that I need to test a mass flow estimator. In the following
chapter, I deal with designing such an estimator.
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Chapter 5

Mass Flow Estimator

In this chapter, I discuss my implementation of the mass flow estimator. I
start of with a simple measurement based Kalman filter estimator, which has no
knowledge of the system dynamics. Later, I build on it to create the final estimator,
which is essentially an extended Kalman filter (EKF), which utilizes a state-space
model. In the process, I overview the resources I used when implementing the EKF
in MATLAB and later in Simulink. I also deal with the numerical robustness of
my implementation of the EKF, taking advantage of alternative implementation
methods.

5.1 MATLAB Toolbox

The first step in the creation of the mass flow estimator is implementing the
Kalman filter itself. Thankfully, this has already been done by many others, so I
can build on the fruits of their work. A nice toolbox for Kalman filtering, which
I have initially chosen to work with, has been created by Simo Särkä, et al. at
the Aalto University School of Science [18]. It is called the EKF/UKF Toolbox
for MATLAB and it focuses mainly on the extended and unscented versions of
Kalman filters and Kalman smoothers. It however also considers regular Kalman
filters and provides many miscellaneous functions for discretization of linear sys-
tems, probability calculations, etc. Several demo problem solutions demonstrating
the functionality of the toolbox are also included—a detail which was of great
importance and help in my work.

The main functionality of the toolbox is provided in the functions calculating
the temporal update and the measurement update of a Kalman filter. The toolbox
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includes several versions of these functions, one for each version of the Kalman fil-
ter it considers. As an example, for the linear Kalman filter, there is a function
kf predict which performs the temporal update and a function kf update which
performs the measurement update. Analogously, for the extended Kalman fil-
ter using linear approximation, there are the ekf predict1 and the ekf update1

functions. Input parameters of these functions are used to specify the different
variances as well as model of the system to which the Kalman filter is applied. An
in depth description of all the toolbox capabilities is available in its documenta-
tion [18].

5.2 Estimator with Simplified Linear Model

Perhaps the simplest and easiest way to implement an estimator lies in using
a regular linear Kalman filter, which would operate without any knowledge of the
non-linear model of the system. The only information such a Kalman filter uses
is a noisy measurement of the observed variable, which is in this case the electric
power. However, because the observed output equation for electric power (??) is
not linear and I want to use a linear filter at this stage, I instead transform the
noisy measurement of the electric power driving the pump to mass flow using the
P-q characteristic of the pump (see Figure 4.5). This is essentially the reverse of the
process used to model the electric power in the Simulink model (see Figure 4.8). In
the Simulink test-bench, this transformation of the measurement of electric power
to the mass flow is done at run-time by the flowEstimator block.

The temporal update step of this Kalman filter is based on the assumption,
that the update of the state variables is entirely stochastic, following the equation

x̂−k+1 = xk + vk (5.1)

where v is the random process noise. As is clear from equation (5.1) the state ma-
trix A is in this case in fact an identity matrix, meaning that the a priori estimate
of the state in mean value remains unchanged, only its uncertainty increases. This
leaves the bulk of the correction of the value to the measurement update step of the
Kalman filter, making the estimate thoroughly dependent on the measurements
them self.

An estimator like this generally does not perform very well compared to an
estimator with knowledge of the model. However, in case that the estimated
states do not change rapidly and the measurements are not biased it performs
sufficiently well. In steady state situations especially, it can perform almost as
good as the more advanced estimators, which I discuss further on.
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5.3 Extended Kalman Filter Estimator

The logical improvement over the simple Kalman filter estimator described in
the previous section is taking advantage of the knowledge of the non-linear system
model, which is discussed in detail in Appendix B. With the complete state-space
model of the system from the appendix, including the calculated Jacobians, I have
all the theory I need to create the improved mass flow estimator. Since this model
is a non-linear one, the use of an extended Kalman filter is necessary.

When using the EKF/UKF toolbox, the transition from a linear Kalman filter
to the extended Kalman filter is very simple, the substitution of different temporal
and measurement update functions being essentially the only thing required to do
so. However, the inclusion of the system model presents more work, as both the
function f relating the state at the previous time step to the state at the current
time step and the function h relating the current state to the current measurement
need to be implemented as a MATLAB functions together with functions evaluat-
ing their respective Jacobian matrices. Handles to these MATLAB functions are
passed to the toolbox functions during estimation for it to be able to calculate the
temporal and measurement updates.

After the above has been done, the variance matrices describing the process
and measurement noise needed to be set. The variance of the measurement of
the electric power driving the pump have been examined previously in Chapter 4,
where I have fitted the standard deviation characteristic with a polynomial. The
estimator evaluates this polynomial at each time step based on the current input
and last estimated state values, so that the variance matrix can be adjusted ac-
cordingly. The variance for the process noise has been set empirically with the help
of the Simulink model, which is a common practice when implementing Kalman
filters. Having done that, the extended Kalman filter estimator which uses all the
information available to it is ready to be used.

5.3.1 Numerically Robust Implementation

During development and testing of the non-linear estimator, I often ran into
trouble when the calculation of the covariance matrix diverged for various reasons,
such as inaccuracies in the model or very noisy input data. Having suspected that
this was due to numerical inaccuracies caused by round-off errors, I looked for
ways to reduce the sensitivity of the calculations to such errors, reducing the like-
lihood of such issues in the process. I found the solution in employing alternative
implementation methods for the functions performing the temporal update and
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the measurement update of the extended Kalman filter.

Figure 5.1: Comparison of performance of several methods of implemen-
tation of the Kalman filter on a variably ill-conditioned problem. The
graph shows the degradation of the Riccati equation observational up-
dates with varying problem conditioning. Taken from [7].

Several different methods for decreasing the sensitivity of the Kalman filter to
round-off errors are discussed in detail in [7, Chapter 7]. Figure 5.1 illustrates how
the standard Kalman filter and some of the alternative implementation methods
perform on a variably ill-conditioned problem. As is noted in [7], for this particular
example, the accuracies of the methods labelled ”Bierman” and ”Carlson” appear
to degrade more gracefully than the others as the conditioning worsens.

For my extended Kalman filter estimator, I have chosen to utilize an imple-
mentation of the Bierman-Thornton UD filtering, which uses modified Cholesky
factors of the covariance matrix P of the state estimation uncertainty for the
Kalman filter. The fundamental part of this procedure is the factorization of P to
the modified Cholesky factors, which have the form

P = UDUT

where U is a unit triangular matrix (i.e. with ones on the diagonal) and D is a
diagonal matrix with positive diagonal entries. The Bierman algorithm for the
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measurement update and the Thornton algorithm for the temporal update in the
Riccati equation are then used on the modified Cholesky factors U and D.

Incorporating these methods into the workflow of the estimator effectively
means replacing the functions performing temporal and measurement update from
the EKF/UKF Toolbox (i.e. the functions ekf predict1 and ekf update1) by
functions performing the pair of algorithms described above and prepending them
by a function performing the initial UD factorization of the covariance matrix.
After this has been done, I had an alternative implementation of the extended
Kalman filter estimator, which is more likely to produce accurate results even if
the conditioning of the estimation problem becomes bad, although it is theoret-
ically not any better than the standard implementation, if it were to run on a
computer with infinite precision.

5.4 Simulink S-Function

To be able to use the estimator at simulation runtime so that it is be able to
perform the estimation on-line, I needed to implement it as a Simulink S-Function.
S-Functions provide a way to embed complex code into a Simulink model. Since
all the previously written code was in MATLAB, I used the Level-2 MATLAB
S-Functions, which allow for creation of custom blocks with multiple input and
output ports and capable of handling any type of signal produced by a Simulink
model using the MATLAB language.

The working principle of the implemented S-Function is such, that it stores
the mean values and covariance matrix UD factors of the estimated states. These
stored variables are then updated at each simulation time step using the cur-
rent input values according to the MATLAB functions implementing the extended
Kalman filter described in the previous section. The estimated means of the states
as well as the corresponding estimated output value are then channelled to the out-
put of the Simulink block. These output values are ready to be used for evaluation
of the estimator performance and, more importantly, for the purpose of control of
mass flow in the hydronic system.

Performance of the implemented mass flow estimator is examined in Chapter 7.
Before that however, the next chapter deals with the control of mass flow in the
hydronic system.
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Chapter 6

Control

The next goal of this thesis, now that the mass flow estimator has been devel-
oped, is to utilize the estimation in an optimal mass flow controller which would
follow some input (reference) mass flow. To control the mass flow, the pump driv-
ing the liquid in the hydronic system needs to be controlled, so in this chapter,
I develop a controller for the pump. First, I use a simple PI feedback controller.
After that, I try to develop a more complex controller utilizing optimal control
techniques.

6.1 PI Controller

The proportional-integral (PI) controller is a special case of the proportional-
integral-derivative (PID) controller without the derivative term. The working
principle of the controller is very simple. It continuously calculates the differ-
ence between a desired reference setpoint and a measured process variable. This
difference is called the error. The controller attempts to minimize this error over
time by adjusting its control output, which is calculated as a sum of the error
and its integral weighted by the proportional and the integral gains respectively.
Expressed in an equation, the control output of the PI controller is calculated as

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ (6.1)

where t is the present time, e(t) is the error, Kp is the proportional gain and Ki is
the integral gain.

In the hydronic system in question, there is no direct measurement of the
controlled variable—the mass flow—so it is not possible to calculate the error
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in the usual way. Instead of the measurement, I use the estimate of mass flow
provided by the mass flow estimator developed earlier in this thesis. A schema of
the hydronic system being controlled by a PI controller is shown on Figure 6.1.
The tuning of the PI controller parameters was done by hand. The reason for it
being that there is not a systematic way for tuning it for non-linear systems.

Figure 6.1: Schema of the hydronic system with PI Controller. The
desired mass flow setpoint is denoted qref , while q̂ and q denote the mass
flow estimate and the actual mass flow in the system respectively. The
measured electric power Pe is obscured by a measurement error em. The
controller output is the pump speed s.

The disadvantage of using the PI controller in this scenario is that it does
not use the knowledge of the hydronic system model in any way. Even though it
works reasonably well, as will be shown in the next chapter, I now look for a way
of utilizing this knowledge in the creation of a better controller.

6.2 Jacobian Linearization Based Controller

When attempting to control a non-linear system, it is possible to use an
approach called Jacobian linearization of a non-linear system about the trajec-
tory [19]. In this approach I use a feedforward controller calculating the steady
state input of the system based on the reference mass flow. The trajectory of the
feedforward controller is the used for the linearization. Once the linearization is
done, it is possible to use the result to design an optimal linear-quadratic regulator
(LQR), which is a form of state-feedback controller.
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6.2.1 Jacobian Linearization

Considering a non-linear system governed by the equation

xk+1 = f(xk,uk) (6.2)

a point x̄ is called an equilibrium point if there is a specific equilibrium input ū,
such that

f(x̄, ū) = 0 (6.3)

Since (x̄, ū) is an equilibrium point and input, it is guaranteed, that if the system
starts at x0 = x̄ and the constant input uk = ū, then the state of the system will
remain fixed at xk = x̄ for all time steps k.

Defining deviation variables, allows for describing what happens in case the
system deviates from the equilibrium a little.

δxk = xk − x̄

δuk = uk − ū

Substituting the deviation variables into the differential equation (6.2) yields

δxk+1 = f(δxk, δuk) (6.4)

Doing first order Taylor expansion of of the right hand side of equation (6.4)
results in

δxk+1 ≈ f(x̄, ū) +
∂f

∂x

∣∣∣∣x = x̄
u = ū

δxk +
∂f

∂u

∣∣∣∣x = x̄
u = ū

δuk (6.5)

Remembering, that f(x̄, ū) = 0 leaves

δxk+1 ≈
∂f

∂x

∣∣∣∣x = x̄
u = ū

δxk +
∂f

∂u

∣∣∣∣x = x̄
u = ū

δuk (6.6)

The difference equation (6.6) approximately governs the deviation variables δx k

and δu k as long as they remain small.

Looking closely at the partial derivatives in equation (6.6), one can notice, that
when considering the hydronic system at hand the first one is actually the state
equation Jacobian F introduced and derived in Appendix B (or more precisely its
first element, since I am only controlling the mass flow) evaluated at the equi-
librium. Defining the second partial derivative in equation (6.6) to be another
Jacobian G = ∂f

∂u

∣∣x = x̄
u = ū

one can write

δxk+1 = Fδxk + Gδuk (6.7)
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Equation (6.7) is called the Jacobian linearization of the original non-linear sys-
tem about the equilibrium point (x̄, ū) which for small deviations approximately
governs the relationship between the deviation variables δx and δu.

The above works well for simple cases. However, it is not satisfactory for the
control of the hydronic system, where the deviations are relatively large. Thank-
fully a generalization of this approach exists. It lies in redefining the Jacobian
matrices as being time-varying

Fk =
∂f

∂x

∣∣∣∣xk = x̄k

uk = ūk

Gk =
∂f

∂u

∣∣∣∣xk = x̄k

uk = ūk

Having done that, the governing difference equation changes to

δxk+1 = Fkδxk + Gkδuk (6.8)

This new equation (6.8) is called the Jacobian linearization of the system about the
trajectory and acts as a generalization of the linearizations about the equilibrium
points [19].

6.2.2 Feedforward Controller

To bring the system close to the desired reference fast and to create a trajectory
for the Jacobian linearization, I design a feedforward controller calculating the
steady state control input necessary for the reference state. This can be done
simply by solving for s in the equation

0 =
a2 −R
I

q2 +
a1
I
sq +

a0
I
s2 (6.9)

which is the equation (3.15) with the rate of change of mass flow q̇ equal to zero.
I denote the solution to this steady state equation sff .

6.2.3 Linear-quadratic Regulator

Utilizing the result of Jacobian linearization, I now design a linear-quadratic
regulator. In essence, the LQR algorithm is a way of designing an optimal state-
feedback controller to drive the deviation variables to zero. Generally, given a
linear system

xk+1 = Axk + Buk
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the algorithm calculates an optimal gain matrix K such that the state-feedback
law

uk = −Kxk (6.10)

minimizes the quadratic performance measure

J =
∞∑
k=0

(
xT
k Qxk + uT

k Ruk

)
(6.11)

where Q is a real symmetric positive semi-definite matrix and R is a real symmetric
positive definite matrix [20].

In my case, I only have a linear equation for the deviation variables

δxk+1 = Fkδxk + Gkδuk

so the state-feedback law takes the form of

δuk = −Kδxk (6.12)

and it minimizes the performance measure

J =
∞∑
k=0

(
δx

T
k Qδxk + δu

T
k Rδuk

)
(6.13)

Thus, this state-feedback clearly only takes care of the deviations from the trajec-
tory, i.e. deviations from the reference.

Adding together the feedforward control sff and the LQR state-feedback con-
trol sLQR = δuk evaluated at the reference mass flow and the corresponding input
provided by the feedforward controller forms the entire control input regulating
the non-linear system. The schema shown on Figure 6.2 shows the layout of the
entire Jacobian linearization based control complete with the EKF mass flow esti-
mator, the feedforward controller calculating the steady state input and the LQR
state-feedback accounting for any deviations.

6.2.4 Gain Scheduling

The first implementation of the controller described above has been written as
using Level-2 MATLAB S-Functions, which evaluated of all the necessary calcu-
lations directly at runtime. Due to the relative complexity of these calculation,
especially those necessary for the LQR algorithm, the simulations ran quite slowly.
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Figure 6.2: Schema of the hydronic system with Feedforward and LQR
Controller. EKF estimator provides estimates of mass flow q̂ and hy-
draulic resistance R̂ based on the measurements of electric power Pe.
These are utilized in the feedforward controller and the LQR state-
feedback controller to provide control input back to the hydronic system
based on reference mass flow qref .

To circumvent this issue, I chose to take advantage of the gain scheduling tech-
nique.

The basis of this technique lies in replacing the computationally demanding
linearization and optimal gain calculations by the use of pre-computed values of
the gain. The gain values are first calculated off-line for a number of possible state
and input values, which are uniformly distributed within the operating space of
the system. These values are then interpolated and used as a ”schedule” or lookup
table during simulation.

The schedule of K for the LQR state-feedback controller used in my imple-
mentation is shown on Figure 6.3. Even though the use of such schedule means
losing some precision compared to the direct calculation approach, with reason-
able density of the pre-calculated schedule, it is easily outweighed by the benefit
of radically increased simulation speed.

With controller design finished, I can finally proceed to the evaluation of the
performance of the estimator as well as the performance of the controllers them-
selves.
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Figure 6.3: LQR gain schedule. A graph showing the pre-calculated
values of the LQR gain K for different values of mass flow and pump rev-
olutions uniformly distributed around the operating space of the system.
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Chapter 7

Experiments

In this chapter, I present the experimental results of the designed mass flow
estimator and the developed mass flow controller. All the presented experiments
were performed on the simulation model of the hydronic system implemented in
Simulink. A physical model of the hydronic system has unfortunately not been
available for comparison. I begin with the review of performance of the mass flow
estimator, after which I move on to the mass flow controller.

7.1 Mass Flow Estimation

For the evaluation of mass flow estimation, I did not use any form of a con-
troller in the simulation model. Instead, I directly set up the pump speed input
with a series of predefined setpoints. Since the hydraulic resistance in the system
is constant, this means that after a each setpoint had been set, the mass flow
were constant as well once the transients had died out until a new setpoint was
introduced.

7.1.1 Estimator with Simplified Linear Model

The first experiment I ran, was with the Simplified Linear Model Estimator.
This estimator has no knowledge of the non-linear model and uses measurements
of electric power transformed to mass flow by the P-q characteristic as a base for
its estimate. As can be seen on Figure 7.1, such estimator works reasonably well
for high flow situations. However, its performance when the mass flow becomes
lower is completely unsatisfactory.
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Figure 7.1: Mass flow estimation using the simplified linear model esti-
mator. The estimate eventually gets close to the real value of mass flow
when it is high, but fails to do so very precisely, when it is low.

Part of the reason for the poor performance is due to the estimator not taking
into account the changes of variance in the data for different values of mass flow.
Adding this feature could somewhat lower the fluctuation of the estimate, even
though it would not cure it completely. However, even when the flow is higher,
the time it takes the estimator to converge to the correct value of mass flow is
relatively high.

7.1.2 Extended Kalman Filter Estimator

The more complex extended Kalman filter estimator with knowledge of the
non-linear system performs much better. Obtaining information directly from the
measurement of power, the estimator is able to estimate the true mass flow very
precisely, as can be seen on Figure 7.2. The estimated mass flow is within 1 kg/h
of the true simulated value.

The EKF estimator does not suffer from the imprecision in low mass flow
situations as the simple estimator did. Thanks to the fact, that the mathematical
model in the estimator fits closely to the model used in the simulation, the estimate
also follows any changes in mass flow due to changes in input pump speed very
precisely.

Figure 7.3 show, that the extended Kalman filter estimator also does a good
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Figure 7.2: Mass flow estimation using the extended Kalman filter es-
timator.

job filtering the noisy electric power measurement. The estimate of electric power
is very smooth even when the variance of noise in the measurements is relatively
high.

As opposed to the simple estimator, the EKF estimator is also able to identify
and estimate the hydraulic resistance of the hydronic system quite precisely with-
out any initial knowledge about it. Figure 7.4 shows that the estimate of resistance
is very close to the true value. Nevertheless, the resistance is not estimated abso-
lutely precisely and some of the disparity between the estimated and the actual
true mass flow is in fact due to this imprecision.

The certainty the estimator has about its estimation is reflected in the mass flow
standard deviation calculated from the internal Kalman filter covariance matrix
and shown in Figure 7.5. The plot clearly shows, that after some initial uncertainty,
the standard deviation stays approximately below 2 kg/h. The root-mean-square
error of the estimation was in fact in this case 1.12 kg/h. This makes the estimator
very precise with the estimation error two orders of magnitude smaller than the
actual mass flow value.

Overall the results of the extended Kalman filter estimator are very satisfactory
and mean a significant improvement over the simple estimator used initially. As
such, they also serve as good base for the next step—experiments with the mass
flow control.
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Figure 7.3: Electric power measurements acting as the main source of
information for the extended Kalman filter estimator.

Time [s]
0 10 20 30 40 50 60 70 80R

es
is

ta
nc

e 
[P

a 
h2 /k

g2 ]

0

0.1

0.2
EKF Estimator: Resistance Estimation

True simulated resistance
Estimated resistance

Figure 7.4: Hydraulic resistance estimated by the extended Kalman
filter estimator compared to its true value.
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Figure 7.5: Standard deviation of mass flow calculated from the internal
covariance matrix of the extended Kalman filter estimator expresses how
certain the estimator is about its estimate.
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7.2 Mass Flow Control

In this section, I show experimental results of the designed mass flow con-
trollers. Each of the controllers in this section has been given a series of prede-
fined setpoints for the mass flow and tasked to control the pump speed in such a
way, that the true simulated mass flow would follow this reference as closely as
possible. Since the true value of mass flow is not known, the controllers rely on
its estimate provided by the extended Kalman filter estimator, which has been
reviewed above. I start with the simpler of the two different approaches to the
control used—the simple PI controller—to conclude this section with the review
of the more complicated one—the Jacobian linearization based controller.

7.2.1 PI Controller

As shown on Figure 7.6 even a simple empirically tuned PI controller is able
to control the mass flow to follow the reference well, provided that the estimate of
the actual true mass flow used for the tracking is good enough. The control input
necessary for this control may be seen on Figure 7.7.
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Figure 7.6: Mass flow control with a simple PI controller.
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Figure 7.7: Pump speed control input determined by the PI controller.

7.2.2 Jacobian Linearization Based Controller

The results of the much more complex control based on Jacobian linearization
and incorporating a feedforward controller and an LQR state-feedback controller
are shown on Figures 7.8 and 7.9.
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Figure 7.8: Mass Flow control with the feedforward and LQR controller.

While it certainly does show an improvement over the simple PI controller, it is
not a very substantial one. The complex controller does achieve the setpoint faster
and does so using somewhat smoother control input (i.e. with smaller spike at the
transition between setpoints). However, its towering complexity when compared
to the PI controller, makes the latter preferable in situations, where fast transitions
are not a vital requirement.
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Figure 7.9: Pump speed control input determined by the feedforward
and LQR controller.
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Chapter 8

Conclusion

In this thesis, I have dealt with mass flow in hydronic systems. My goal has
been to develop a simulation model of a hydronic system consisting of a pump and
a heat exchanger and to develop a mass flow estimator for this setup. The mass
flow estimator was supposed to fuse all available information to make estimates of
mass flow through the pump. The next goal of this work was to develop a mass
flow controller for the system using optimal control techniques.

I began with a theoretical study of data fusion and estimation theory, re-
viewing several methods of state estimation applicable to hydronic systems. The
method which I chose to use for the design of the mass flow estimator—the Kalman
filtering—was analysed in more detail.

The theory of hydronic system modelling was the next subject of my focus.
I first derived a mathematical model of each of the components of the hydronic
system separately, with extra focus on the model of the pump, before joining
them together into a mathematical model of the complete hydronic system. This
mathematical model served as a foundation for the setup of simulation model
implemented in Simulink. I used data recorded from a physical model of a hydronic
network to calibrate the simulation model of the pump. I also used the data for the
study of pump electric power characteristic with respect to mass flow and pump
impeller revolutions. I fitted the data with a multidimensional polynomial for later
use in the estimation.

In the design of the mass flow estimator I first derived the discrete version of
the mathematical model of the hydronic system. I then used this discretized model
to formulate a state-space description of the non-linear system. This state-space
description was then used in an extended Kalman filter which performed the actual
estimation. After that, I augmented the state-space description with the hydraulic
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resistance parameter, for the Kalman filter to be able to estimate it together with
the mass-flow. This not only increased the reliability of the estimation, but also
removed the need for the resistance to be identified in some other way.

When implementing the mass flow estimator, I first created a version relying
solely on the data and the electric power-to-mass flow characteristic of the pump.
Then, I improved upon it by incorporating the non-linear model and by the use
of the extended Kalman filter. In the final version of the estimator, I utilized an
alternative implementation method of the Kalman algorithm robust to round-off
errors, which uses modified Cholesky factors of the covariance matrix, to increase
the overall precision.

Finally, I created a mass flow controller which uses the mass flow estimate
to track a reference mass flow setpoint. I present two alternative versions of the
controller, the first being a simple PI controller, the other a more complex Jacobian
linearization based controller, which consists of a feedforward part and an optimal
LQR state-feedback controller for control of the deviations from the trajectory.

Simulation experiments with the estimators presented towards the end of this
thesis show that the extended Kalman filter mass flow estimator performs very
well. Its precision stands out especially when compared with the simple linear
estimator relying solely on the data. In my experiments, the estimation error was
two orders of magnitude smaller than the estimated value. Thanks to the good
performance of the estimator, it is possible to control the mass flow even with a very
simple PI controller as is illustrated by the experiments. Comparing the complex
Jacobian linearization based controller with the optimal LQR state-feedback to
the PI controller shows, that little improvement of the control is actually achieved
by its usage.

Unfortunately, I was unable to verify the performance of the mass flow estima-
tor and the mass flow controller on a physical model of the hydronic system, as
a suitable test-bench has not been made functional in time. However, other than
that, I fulfilled every task given to me in the assignment.

Thus, the component on which future improvements should concentrate pri-
marily is the mass flow estimator rather than the mass flow controller. Possible
extensions of the estimator include the inclusion of information coming from the
temperature drop across the heat exchanger in the estimation. Such information
would make the estimator more robust towards imprecisions of the dynamic model
of the mass flow and the possible discrepancy between the modelled pump and re-
ality. As for the controller, the use of non-linear model predictive control might
be feasible. However, as it has been shown that even a simple PI controller gives
satisfactory results, it might not bring a significant improvement.
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Appendix A

CD Content

A CD is attached to the printed version of this work containing the text of
the thesis in PDF format, the data measured on the physical test-bench and the
simulation data for the experiments. The directory structure on the CD along
with the description of its contents is shown below.

/

data

experiments simulation.............simulation data used in Chapter 7

flow simulations ..............miscellaneous data used in development

pump characteristic ................ data from the physical test-bench

PumpData.m .......MATLAB class easing interaction with test-bench data

thesis.pdf .......................... diploma thesis report in PDF format
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Appendix B

Non-linear System Model

Not included due to confidentiality restrictions.
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